DOI: 10.33942/sit1703 УДК 625.731.7/.9

ГРАНУЛДУУ ТОПУРАКТАН ЖАСАЛГАН ЖОЛ ТӨШӨЛМӨСҮНҮН НЕГИЗИН МАТЕМАТИКАЛЫК МОДЕЛДӨӨНҮН ЖАРДАМЫ МЕНЕН БААЛОО

Апсеметов М.Ч., Приходько А.А., Молдоболотов А.А., Адысатаров А.А.

H.Исанов атындагы Кыргыз мамлекеттик курулуш, транспорт жана архитетура университети, Кыргызстан, Бишкек ш., e-mail: muhtar.ap@mail.ru, e-mail: lexuzz@yandex.ru

Бул макалада бүртүкчөлүү топурактан турган жол төшөлмөнүн негизин математикалык моделдөөнүн жардамы менен баалоо каралды.

Чечүүчү сөздөр: топурак, жол төшөлмө, бүртүкчө, математикалык моделдөө, негиз, күч, нымдуулук.

ОЦЕНКА С ПОМОЩЬЮ МАТЕМАТИЧЕСКОГО МОДЕЛИРОВАНИЯ ОСНОВАНИЯ ДОРОЖНЫХ ОДЕЖД ИЗ ГРАНУЛИРОВАННОГО ГРУНТА

Апсеметов М.Ч., Приходько А.А., Молдоболотов А.А., Адысатаров А.А.

Кыргызский Государственный университет строительства транспорта и архитектуры им.Н.Исанова, Кыргызстан, г. Бишкек, e-mail: muhtar.ap@mail.ru, e-mail: lexuzz@yandex.ru

В данной статье рассматривается оценка с помощью математического моделирования основания дорожных одежд из гранулированного грунта.

Ключевые слова: грунт, дорожная одежда, гранул, математическое моделирование, основание, прочность, влажность.

ASSESSMENT USING MATHEMATICAL MODELING OF THE PAVEMENT BASE OF GRANULAR SOIL

Apsemetov M.Ch., Prihodko A.A., Moldobolotov A.A., Adysatarov A.A.

Kyrgyz State University of Construction, Transport and Architecture n.a. N. Isanov, Kyrgyz Republic, Bishkek city, e-mail: muhtar.ap@mail.ru, e-mail: lexuzz@yandex.ru

This article discusses the assessment using mathematical modeling of the base of the pavement of granular soil.

Key words: soil, road clothes, granules, mathematical modeling, foundation, strength, humidity.

Рост темпов строительства дорог и требования обеспечения, бесперебойных и круглогодичных транспортных связей между населенными пунктами обусловливают необходимость более широкого применения грунтов, особенно в районах, где отсутствуют местные каменные материалы.

Опыт показывает, что одной из главных причин потери прочности у грунтов является их: избыточное увлажнение. Проникая в поры сухого грунта, вода адсорбируется на поверхности частиц и вызывает ослабление связей между ними. Далее проявляется расклинивающее действие тонких пленок воды, проникающей под действием

молекулярных сил в узкие зазоры и промежутки между минеральными частицами. Другой причиной разрушения. природных внутренних связей в грунте является действие нагрузок, особенно вибрационных и повторно прилагаемых. При одновременном воздействии нагрузок и влаги любой природный грунт может быть быстро превращен в несвязную, лишенную всякой прочности массу.

Отсюда следует, что постоянная высокая несущая способность грунта может быть обеспечена путем защиты от разрушения высокопрочных конденсационных и кристаллизационных структур или их искусственного создания. В связи с этим мероприятия по улучшению механических качеств грунтов могут быть представлены двумя направлениями: стабилизацией несущей способности прочных от природы грунтов путем предохранения их от разрушительного действия влаги; укреплением слабых грунтов или грунтов, временно потерявших несущую способность, путем создания новых прочных и водостойких связей между частницами и агрегатами./3,6/

В связи с разработкой новых нетрадиционных конструктивно-технологических решений заслуживает внимание теория расчета конструкции с разнообразными нарушениями регулярности (обоймы, трещины, разрезы, ребра, подкладки и т.п.). Известные численные методы, как правило, дают приближенную, сглаженную картину распределения усилений вблизи нарушений регулярности и часто не обеспечивают учета концентрации напряжений. /8/.

Как известно, грунты укрепляют как органическими, так и неорганическими вяжущими, получая при этом достаточно надежные конструктивные слои дорожных одежд. Это касается грунтов с числом пластичности 3-4. Грунты с числом пластичности более 16 будут характеризоваться малыми морозо- и трещиностойкостью и через не большое время разрушатся.

В последнее время заслуживают внимания исследования проф. Н. В. Горелышева, который предложил гранулировать грунты с целью устройства из них оснований для дорог местного значения./7/

Гранулированный грунт можно получить из грунтов различного зернового состава. Крупность гранул регулируется изменением технологических параметров (влажность сырьевой смеси, угол наклона гранулятора, скорость его вращения).

Технологическая схема производства гранул из грунта в лабораторных условиях состоит из следующих процессов:

-подача предварительно разрыхленного грунта в сушильный барабан с сушкой грунта до влажности 3-5 %;

-транспортирование разрыхленного грунта в шаровую мельницу, в которой грунт размельчается до крупности, соответствующей величине удельной поверхности 1400— $1600~{\rm cm}^2/{\rm r};$

-введение расчетной дозы цемента и перемешивание в лабораторном смесителе с последующим увлажнением смеси;

-подача смеси в гранулятор для получения гранул при определенном угле наклона чаши гранулятора и соответствующей скорости ее вращения;

-обработка наружной поверхности гранул гудроном для сохранения в них расчетной влажности и их гидрофобизации.

Сущность грануляции грунтов, предварительно укрепленных цементом и увлажненных расчетным количеством воды, состоит в том, что при вращении чаши

гранулятора зерна грунта отбрасываются стенками чаши и, перекатываясь и соударяясь друг с другом, движутся к центру гранулятора. В результате этого гранулы приобретают округлые формы и имеют первоначальную прочность при сжатии 0,3-0,4 МПа./2/

Для получения гранулированного цементогрунта могут быть использованы грунты супесчаные, суглинистые всех разновидностей и глинистые при условии, что граница их текучести не более 45 %. Песчаные и легкопесчаные грунты должны быть предварительно улучшены пылевато-суглинистыми добавками, глинистые грунты рекомендуется перед обработкой улучшить песком или другими мелкодисперсными добавками./2,3/

Лучшие результаты по механической прочности и водоустойчивости при наименьшем расходе вяжущего можно получить, обрабатывая супесчаные грунты оптимального зернового состава с содержанием глинистых частиц до 10%, пылеватых 25-35%, песчаных 55-75%.

Крупнозернистые смеси с преобладанием частиц более 1 мм устойчивее и прочнее и требуют меньше вяжущего, чем мелкозернистые смеси, поэтому следует отдавать им предпочтение./6/

Агрегирование сухих суглинистых и глинистых грунтов значительно облегчается при оптимальной влажности, т.е. влажности в пределах молекулярной влагоемкости./4/

Оптимальная влажность грунтов (% от массы) в среднем выражается следующими величинами:

супеси легкие и тяжелые	10—42
пылеватые супеси и суглинки	
суглинки легкие	14—46
суглинки пылеватые легкие	
суглинки тяжелые	
глины (число пластичности 17—27)	

Оптимальный угол наклона чаши гранулятора составляет, град.:

супеси	12
суглинки легкие	
суглинки тяжелые	8
глины	6

Прочность при сжатии цементогрунтовых гранул была определена путем испытания в цилиндре (табл. 1)./3,4,6/

При укреплении грунтов цементом методом смешения на дороге прочность образцов при сжатии в цилиндре составляет для супесей 0,20 МПа, для суглинков 0,92, для глин 0,47 МПа.

Сравнительно высокая прочность при сжатии в цилиндре гранул из укрепленного цементом грунта с последующей их обработкой жидким гудроном объясняется следующими причинами:

- -защитой отдельных гранул от избыточного увлажнения слоем гудрона;
- -за счет укрепления грунтов цементом, в результате чего создаются новые прочные и водостойкие связи между частицами и агрегатами;
- -увеличением плоскостей контакта между грунтовыми гранулами при уплотнении основания дорожной одежды;

-за счет многочисленных соударений в процессе изготовления гранул происходит резкое увеличение их прочности в поверхностном слое (от 0,5 МПа в середине гранулы до 6,0 МПа на ее поверхности);

-заполнение немногочисленных пор грунтовых гранул гудроном создает в них высоковязкую массу, способствующую большей сопротивляемости подвижным нагрузкам;

-гудрон исключает слипание гранул, чем обеспечивается дискретность структуры слоя основания, устраняющая опасность образования трещин' в основании дорожной одежды и их копирования в покрытии.

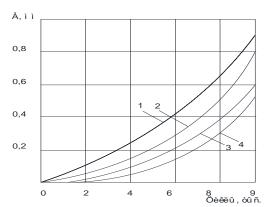
Для уточнения реальных условий работы дорожной одежды с основанием из уплотненной гранулированной грунтовой смеси ее фрагмент был исследован на имитационной установке для ускоренного определения возможности модели воспринимать нормативное количество воздействий от подвижной нагрузки без существенного увеличения упругого прогиба./1,5/

Фрагмент дорожной одежды (масштаб 1:2) состоял из грунта толщиной 40 см, подстилающего слоя из гравийно-песчаной смеси толщиной 20 см, слоя основания из гранулированного гидрофобизированного жидким гудроном грунта, обработанного 6 % цемента, толщиной 16 см. Покрытием служил двухслойный асфальтобетон общей толщиной 7 см.

Результаты исследований модели дорожной одежды с основанием из гранулированного цементогрунта по сравнению с другими моделями приведены в табл. 2

Из табл. 2 видно, что после 9 тыс. нагружений расчетной нагрузкой величина упругого прогиба модели дорожной одежды с основанием из гранулированного цементогрунта не превышает нормативной величины, определенной по ВСН 46-83, и отличается от других моделей меньшей величиной остаточной деформации.

В процессе исследований моделей дорожных одежд с основаниями из некондиционных материалов и отходов промышленности определялись зависимости величины упругого прогиба от количества циклов нагружений, которые характеризовались с помощью основных положений математического моделирования (см. рисунок)./1,5/


Таблица 1

Грунты	Количество	Насыпная	Прочность при сжатии в		
	цемента, %	плотность,	цилиндре, МПа, гранул в		
		Γ/cm^3	возрасте		
			7 сут	1 мес	3 мес
Супеси легкие	4	1,82	1,0	2,0	2,8
Супеси тяжелые	6	1,87	1,3	2,5	3,0
Суглинки легкие	8	2,00	1,5	2,7	2,8
Суглинки тяжелые	10	2,05	1,8	3,0	3,4
Глины	12	2,20	2,0	3,4	5,1

7	Γ_{α}	б	п	и	TI	n	2
	11	()	Л	и		121	

Материал слоя	Количество	Упругая	Остаточна	Коэффицие	Модуль
основания	циклов	деформаци	Я	HT	упругости
	нагружений	я, мм	деформац	Пуассона	дорожной
	, тыс.		ия, мм		одежды, МПа
Отходы камнедробления	9	0,57	3,33	0,28	147
Малопрочные известняки в обойме	9	0,45	4,42	0,27	182
Доменный шлак	9	0,37	3,25	0,28	300
Гранулированн ый пементогрун	9	0,37	1,01	0,32	400

Важнейшей практической задачей при обработке экспериментальных данных является установление вида эмпирической формулы, т.е. зависимости типа y=f(x), наилучшим образом описывающей ту кривую линию, которая проходила бы через экспериментальные точки или рядом с ними с минимальным отклонением.

Puc 1. Зависимость величины упругого прогиба от количества циклов нагружения для моделей дорожной одежды:

1- с основанием из отходов камнедробления; 2 - из малопрочных известняков в обойме; 3 - с основанием из укрепленного доменного шлака; 4 - с основанием из гранулированного цементогрунта

Построение эмпирической формулы слагается из двух этапов: выяснения общего ее вида и определения наилучших параметров. Для первого этапа используются линейные зависимости y = kx + c, квадратичные уравнения $y = ax^2 + bx + c$, системные уравнения $y = a^x$ и др. Определение параметров k, a, b, c и т.п. решается размерными методами.

Для определения эмпирической формулы, связывающей величину прогиба l с количеством циклов нагружения n, был использован метод средних величин. Если в формулу l=f(n) подставить исходные данные \overline{l}_l и \overline{n}_l , то ее левая часть не будет равна правой. Во-первых, из-за того, что \overline{l}_l и \overline{n}_l , как правило, являются приближенными и

содержат определенные ошибки, во-вторых, выбор общего вида эмпирической формулы не может точно соответствовать той линии, которая описывает экспериментальные данные.

Разности (невязки) определяются как

$$f(n) - \overline{l_i} = \varepsilon_i (i=1,2,...,n). \tag{1}$$

Они представляют собой расстояния по вертикали точек $M_i(\overline{n_l}, \overline{l_l})$ от графика эмпирической функции (1), взятой со знаком «+» или «-».

Согласно методу средних величин за наилучшее положение эмпирической кривой принимается то, для которого равна нулю алгебраическая сумма K всех ε_i , т.е.

$$K = \sum_{i=1}^{n} \varepsilon_i = 0 \tag{2}$$

Для определения по методу средних величин постоянных a, b, c и других параметров, которые могут входить в формулу (2), все в разбивают на столько групп, сколько постоянных входят в зависимость l=f(n). Приравнивая к нулю алгебраическую сумму K_j (j=1,2,...,m), входящую в каждую из групп, получаем систему, в которой количество уравнений и неизвестных коэффициентов, входящих в уравнение l=f(n), равно. 1,5,6,7/

Имея экспериментальные данные и проведя необходимые расчеты, получаем искомую эмпирическую формулу

$$l = 4,413 * 10^{-9}n^2 + 2,39 * 10^{-5}n$$
 (3)

Зависимость величин упругого прогиба от количества циклов временной нагрузки, построенных на основе данных экспериментальных наблюдений за изменениями дорожных одежд опытных участков на заводе строительных материалов, практически подтверждает достоверность данных, полученных с использованием методов математического моделирования. Таким образом, отпадает необходимость в построении каждый раз кривых восстановления и проведения исследований до полного затухания деформаций дорожной одежды под повторной нагрузкой.

Список литературы

- 1. Автомобильные дорог (Совершенствование методов проектирования и строительства) / В. М. Сиденко [и др.] // Киев: Будивельник, 1973.- 278с.
- 2. Алексиков С. В. Сооружение земляного полотна автомобильных дорог из грунтов повышенной влажности с их естественным просушиванием. Омск, 1984. 262 с.
- 3. Бируля А. К., Бируля В. И., Носич И. А. Устойчивость грунтов дорожного полотна в степных районах. М.: Дориздат, 1951. 174 с.
- 4. Водно-тепловой режим земляного полотна и дорожных одежд / И.А.Золотарь [и др.] // М., Транспорт, 1971. 416 с.
- 5. Вязгин В. А., Федоров В. В. Математические методы автоматизированного проектирования: учеб. пособие. М.: Высшая школа, 1989. 184 с.
 - 6. Гольдитейн М. Н. Механические свойства грунтов. М., Стройиздат, 1973.213 с.
- 7. Технология и организация строительства автомобильных дорог : учебник / H. B. Горелышев [и др.] // M.: Транспорт, 1992. 551 с.
- 8. Статья «Современные конструктивно-технологические решения оснований дорожных одежд». Досалиев Э.А., Курбанбаев А.Б., Мурзакматов Д.К. Омурбеков Б.О. Вестник КГУСТА Neq 1(51). 2016г. стр.40-44.