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Аннотация: В работе исследовано нелинейное операторное уравнение первого рода в 

Гильбертовом пространстве. Для построения приближенного решения применен метод 

Ньютона. Доказана сходимость приближенного решения к точному решению исходного 

уравнения при 0 . Построено приближенное решение в      окрестности точной 

правой части. 
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Abstract: The paper studies a nonlinear operator equation of the first kind in a Hilbert 

space. To construct an approximate solution, the Newton method is used. The convergence of the 

approximate solution to the exact solution of the original equation is proved for . An approximate 

solution is constructed in the neighborhood of the exact right-hand side. 

Keywords: Newton's method, linear operator, analysis, probability theory, optimization, 

modeling, statistical analysis. 

 

Названный метод для решения корректных задач применялся многими авторами [1] и 

[2]. В данной статье этот метод применяется для решения некорректных задач. Линейные 

некорректные задачи исследовались в работе [3]. Нелинейные некорректные задачи методом 

Лаврентьева исследованы в работах [4, 5]. 

Рассмотрим нелинейное операторное уравнение 

   uКz  ,                                                                                   (1) 

где  К – нелинейный оператор, отображающий Гильбертовое пространство Z  в Гильбертовое 

пространство Z, z – искомый элемент, u – заданный элемент. 

Наряду с уравнением (1) рассмотрим уравнение  

   uКzz  ,                                                                          (2) 

где  0 положительный регуляризирующий параметр. 

Допустим, что при u = u0 уравнение (1) имеет единственное решение z0. Нелинейный 

оператор К определен для любого z удовлетворяющего неравенству: 

   rzz  0                                                                            (3) 

где r – достаточно малое число и определяется ниже. 

Далее предположим, что оператор Кz дифференцируема по Фреше в шаре (3) [1, 2]. 

Пусть производная оператора К в точке z0 является линейным оператором, и этот линейный 

оператор является положительным, обозначим этот оператор через А. В этих условиях 

оператор  AE  имеет обратный оператор для любого  0 [3]. 

В этом случае уравнение (2) эквивалентно следующему операторному уравнению 

      uКzzАЕzz 



1
                                           (4) 

Введем оператор 

                                 uКzzAEzuzВ 



1
;                                         (5) 

Вычислим производную этого оператора 

                                  zAEAEEuzВ  


1
; . 

Отсюда 

             zAzAAEzAEAEAEuzВ  

0

11
;                           (6) 

Оператора   1
 AE  ограничена по норме и удовлетворяет неравенству [1]. 

                                        



11




AE                                                                     (7) 

Допустим, что производная оператора К является непрерывным 
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                              ,
0

0


zzN
zAzA


       rzz  0                        (8) 

Используя неравенства (7), (8) из (6), получаем  

                                       ,;
0




zzN
uzВ


                                                     (9) 

Таким образом, оператор  uzВ ;  удовлетворяет условию Липшица с постоянной  

,0



zzN 
  т.е. удовлетворяет неравенству  

                                .;; 1212 zz
rN

uzВuzВ 


                                 (10) 

Например      )(r  . 

Покажем, что оператор   uzВ ;  шар trzz  0  отображает в себя.

 Рассмотрим разность: 

             
         

      000

0000

;;;

;;;;

zuzBuzBuzB

zuzBuzBuzBzuzВ









                         (11) 

В правой части неравенства (11) первое слагаемое в силу (10) удовлетворяет 

неравенству 

                          .;;
2

00 zz
N

uzBuzB 


                                           (12) 

Второе слагаемое оценивается в следующем виде: 

   

     

         uuAEzAEuKzzAE

zuKzzAEzzuzВ









0

1

0

1

00

1

000

1

000;





                    (13) 

Допустим, что точное решение представим в виде 

                                       ,00 Az         1;020 L  . 

Тогда первое слагаемое в неравенстве (13) оценивается в следующем виде [4] 

                                        00

1
  


AAE                                                   (14) 

Оценим второе слагаемое справа в (13). 

В силу неравенства (7) и  0uu , получаем  

                                    





 




 0

0

1
uu

uuAE                                            (15) 

Используя неравенства (14), (15) из неравенства (13), получаем 

              





  000; zuzB                                                          (16) 
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Используя неравенства (16), (12) из равенства (11) получаем  

                      








 


 0

2

0

0;
zzN

zuzB                             (17) 

Используя неравенства (3) из (17) получаем 

   00

2

0

0; zz
zzN

zuzB 











               (18) 

Введем обозначение  

 



   0)(             (*) 

Покажем, что оператор    uzB ;   при некотором t   шар   

    tzz  0  отображает в себя. 

Из (18) для определения  t   получаем уравнение  

012  tt
N



.  Обозначим через  



N
h  . 

Тогда решение уравнения (19) представимо в виде   

h

h
t

2

411
2,1


 . 

Пусть постоянное число   h    удовлетворяет неравенству    

4

1
h .                     (20) 

Тогда минимальный корень   

h

h
t

2

411
0


          (21) 

При этих значениях  t   оператор   uzВ ;  шар   00 tzz    отображает в себя. 

Функция  )(  в точке  

























1

1

0

1

1
1

)(
v

, 

Достигает минимуму и этот минимум равен  

  0
11

1

0
1

0
1)( Cvv 











 
  , 

где     


 1

1

000 vvC . 

Подставляя значение   )(    и   )( , выражению  



НАУКА И ИННОВАЦИОННЫЕ ТЕХНОЛОГИИ  №2/2025 (35) 

129 






























 1

1
*

1

1
1

0
1

C

C

NC
Nh . 

Допустим, что параметр  1 . 

Таким образом  

4

1
1

1
*

1 







C ,     т.е. 0

1

1

*
14

1


























C
. 

Из неравенства (10) полагая  0tr  , получаем  

   

1212

1212

2

1

2

411

;;

zzzz
h

h
h

zz
N

uzBuzB











.        (**) 

Таким образом, оператор  uzB ;  удовлетворяет условию Липщица с постоянной  
2

1 , 

т.е. оператор  uzB ;  является сжимающим оператором. 

Доказана следующая  

Т е о р е м а  1. Пуст: 1) операторное уравнение (1) при 0uu   имеет точное решение 

0z ; 2) Нелинейный оператор К в точке  0z  имеет производную; 3) производная оператора К 

удовлетворяет условию Липщица с постоянной  N; 4) точное решение 0z  истокообразно 

представимо в виде 1      ,00  vAz ; 5) параметр   удовлетворяет условию   1

1

)( ; 6) 

    удовлетворяет условию  
0

1)( C


  . 

Тогда уравнение (2) имеет единственное решение   z . 

Покажем, что это решение при 0uu   сходится к решению уравнения (1) при  0 . 

Действительно имеет места тождества  

          0
0

0
00100 ;uzBuKzzAEzz   


                               (20) 

 Далее имеет места тождества 

           0

1

000

1

000

1

00 ; zAEuzBzAEuKzzAEzz  


      

(21) 

Вычитая из тождества (20), (21), получаем  

                                00
0

0
0

2

1


  zzNzz                         

Отсюда  

                                  
0

0

0
0

1 q
zz






                                                       (22) 
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Здесь мы учитывали неравенства (**). 

Доказана  

 Т е о р е м а 2.  Пусть выполняются все условия теоремы 1.  

 Тогда при 0uu   уравнение (4) имеет решение 
0
z  и это решение при 0  

стремиться к точному решению уравнения (1). Скорость сходимости удовлетворяет 

неравенству: 

                                  00
0 2 
  zz     

Далее исследуется уравнение (1), когда приближенно задается оператор К  

uzKn                                                        (1`) 

Тогда наряду с уравнением (1`) рассмотрим уравнение  

uzKz n                                                 (2`) 

Доказано, что решение уравнения (2`) является приближенным решением уравнения 

(1). 
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