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Аннотация. Мурда дифференциалдык типтеги операторлор жана чечимдердин оң 

экендигин далилдөө үчүн тиркемелери менен интегралдык типтеги операторлор менен ар 
кандай теңдемелер үчүн баштапкы маселелердин чечимдеринин жашашын далилдөөнүн 
белгилүү ыкмаларын классификациялоо, модификациялоо жана жалпылоо  жүргүзүлгөн [1-
7] . 

Ар кандай алмаштыруулардан жана кайра өзгөртүүлөрдөн кийин функциялардын 
көптөгөн асимптотикалык эмес касиеттеринин болушу функциянын оң экендигине 
келтирилиши мүмкүн, ал эң жалпы касиет катары ушул макалада каралат. Кеңири 
жалпылык үчүн бардык маселелер оператор түрүндө каралат. 

Ачкыч сөздөр: дифференциалдык теңдеме, жекече туундулуу интегро-
дифференциалдык теңдеме, операторлор, чечимдин жашашы 
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Аннотация. Ранее произведена классификация, модификация и обобщение известных 

методов доказательства существования решения начальных задач для различных уравнений 
с операторами дифференциального типа и операторами интегрального типа с 
приложениями к доказательству положительности решений [1-7]. Наличие многих не-
асимптотических свойств функций после различных подстановок и преобразований можно 
свести к положительности функции, что, как наиболее общее свойство, и рассматривается 
в настоящей статье. Для большей общности все задачи рассматриваются в операторной 
форме. 

Ключевые слова: дифференциальное уравнение, интегро-дифференциальное уравнение 
в частных производных, операторы, существование решения 
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Annotation. Previously, a classification, modification and generalization of known methods for 
proving the existence of solutions to initial problems for various equations with operators of 
differential type and operators of integral type was carried out with applications to proving the 
positivity of solutions [1-8]. The presence of many non-asymptotic properties of functions after 
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various substitutions and transformations can be reduced to the positivity of the function, which, as 
the most general property, is considered in this article. For greater generality, all problems are 
considered in operator form. 

Key words: differential equation, integro-differential partial differential equation operators, 
existence of a solution 

 
Bведение 

Обзор литературы показывает, что после получения какого-либо конкретного 
результата обобщают, или (реже) улучшают его [13]. Применительно к теории 
динамических систем, можно выделить приемы, которые непосредственно 
используется в доказательстве теоремы. 

Для доказательства существования решений в теории дифференциальных и 
интегро-дифференциальных уравнений в частных производных было разработано 
много методов. Вместе с тем, в публикациях мало внимания уделяется не менее 
важному вопросу наличия различных свойств у решений, кроме глубоко 
исследованных свойств устойчивости (непрерывности) по переменным, имеющим 
смысл времени, или по различным параметрам. Отметим, что в прикладных задачах 
существование решения следует из самой постановки задачи, и наибольший интерес 
представляют именно свойства решений в сравнении с реальностью. 

Наличие многих не асимптотических свойств функций после различных 
подстановок и преобразований можно свести к положительности функции, что, как 
наиболее общее свойство, и рассматривается в настоящей статье. Для большей 
общности все задачи рассматриваются в операторной форме, и на операторы 
налагаются такие условия, какие могут реально выполняться для  дифференциальных 
и интегро-дифференциальных уравнений в частных производных. 
 

1. Методы доказательства существования решений 
1.1. Замена ограничений на отдельные компоненты  
1.2. Введение пробных элементов.  
Такой метод был развит д.ф.-м.н. ИМ НАН КР С.И.Искандаровым [11]. Он 

обобщает известный прием доказательства существования решений с помощью 
принципа сжимающих отображений: 

ЛЕММА 1.1. Дано уравнение 
u = F(u),        (1.1) 

где   F: U→U. 
Если можно подобрать такое «пробное» подмножество U1⊂U, что F(U1)⊂U1, и 

для сужения оператора F на U1  выполняются условия одного из принципов 
неподвижной точки, то уравнение (1.1) имеет хотя бы одно решение. 



 
 

В свою очередь, для доказательства выполнения таких условий может быть 
необходимо введение еще одного «пробного» элемента. 

В частности, применительно к операторно-интегральным уравнениям отсюда 
следует 

ЛЕММА 1.2. Дано слабо нелинейное операторное уравнение 
u(x) = F(x;u(ξ):0≤ξ≤X) (0≤x≤X),                                   (1.2) 

где  F: C[0,X]→C[0,X] известно, что 

||𝐹𝐹(𝑥𝑥;𝑢𝑢1(ξ): 0≤ξ≤𝑋𝑋)−𝐹𝐹(𝑥𝑥;𝑢𝑢2(ξ): 0≤ξ≤𝑋𝑋)||𝑪𝑪[0,𝑋𝑋] ≤ 𝐿𝐿� |
𝑋𝑋

0
𝑢𝑢1(𝑠𝑠) − 𝑢𝑢2(𝑠𝑠)|𝑑𝑑𝑑𝑑 

(и может быть  LX>1). 
Если можно подобрать такие замкнутую область  Ω⊂C[0,X] и положительную 

функцию  p(x), что  
1) F(Ω) ⊂Ω; 
2) | 𝐹𝐹(𝑥𝑥;𝑢𝑢1(ξ): 0≤ξ≤𝑋𝑋)− 𝐹𝐹(𝑥𝑥;𝑢𝑢2(ξ): 0≤ξ≤𝑋𝑋)| ≤ 

≤ θ𝑝𝑝(𝑥𝑥)� |
𝑋𝑋

0
𝑢𝑢1(𝑠𝑠) − 𝑢𝑢2(𝑠𝑠)|

1
𝑝𝑝(𝑠𝑠)𝑑𝑑𝑑𝑑

(0 ≤ 𝑥𝑥 ≤ 𝑋𝑋), θ𝑋𝑋 < 1, 

то уравнение (1.2) имеет хотя бы одно решение. 
ДОКАЗАТЕЛЬСТВО. Введем в Ω  метрику, определяемую нормой 

‖𝑢𝑢‖∗ ≔ sup �|𝑢𝑢(𝑠𝑠)| 1
𝑝𝑝(𝑠𝑠)

�0≤ 𝑠𝑠 ≤𝑋𝑋� , |𝑢𝑢(𝑥𝑥)| ≤ 𝑝𝑝(𝑥𝑥)‖𝑢𝑢‖∗, 0≤𝑥𝑥≤𝑋𝑋.       (1.3) 

По этой норме имеем: 

‖𝐹𝐹(𝑥𝑥;𝑢𝑢1)−𝐹𝐹(𝑥𝑥;𝑢𝑢2)‖∗ = sup �|𝐹𝐹(𝑠𝑠;𝑢𝑢1)−𝐹𝐹(𝑠𝑠;𝑢𝑢2)| 1
𝑝𝑝(𝑠𝑠) �0≤𝑠𝑠≤𝑋𝑋� ≤ 

≤ θ� |
𝑋𝑋

0
𝑢𝑢1(𝑣𝑣) − 𝑢𝑢2(𝑣𝑣)|

1
𝑝𝑝(𝑣𝑣)𝑑𝑑𝑑𝑑 ≤ θ𝑋𝑋‖𝑢𝑢1 − 𝑢𝑢2‖∗, 

то есть оператор  F является сжимающим, и в области Ω  применяется Лемма  1.3. 
В частности, таким путем доказывается существование решения опера- 

торного уравнения типа Вольтерра, где оператор типа Вольтерра определяется, как  
𝐹𝐹(𝑥𝑥;𝑢𝑢(ξ): 0≤ξ≤𝑥𝑥). 

ЛЕММА 1.3. Дано операторное уравнение 
𝑢𝑢(𝑥𝑥)  =  𝐹𝐹(𝑥𝑥;𝑢𝑢(ξ): 0≤ξ≤𝑥𝑥) (0≤𝑥𝑥≤𝑋𝑋),     (1.4) 

где  F: C[0,X]→C[0,X]  известно, что: либо1) (сильная нелинейность) для любой 
ограниченной замкнутой области Ω  существует такая константа  LΩ, что 

|𝐹𝐹(𝑥𝑥;𝑢𝑢1)−𝐹𝐹(𝑥𝑥;𝑢𝑢2)| ≤ 𝐿𝐿Ω ∫ |𝑥𝑥
0 𝑢𝑢1(𝑠𝑠) − 𝑢𝑢2(𝑠𝑠)|𝑑𝑑𝑑𝑑, 0≤𝑥𝑥≤𝑋𝑋,  (1.5) 

и можно подобрать такую замкнутую область  Ω⊂C[0,X], что  F(Ω) ⊂Ω, 
либо 2) (слабая нелинейность) (1.5) выполняется с единой константой  L, 



 
 

то уравнение (1.4) имеет решение. 
ДОКАЗАТЕЛЬСТВО. Обозначим (в первом случае)  L:=LΩ  для этой области. 
Выберем в (1.3) 𝑝𝑝(𝑥𝑥) ≔  𝑒𝑒2𝐿𝐿𝐿𝐿, тогда имеем: 

‖𝐹𝐹(𝑥𝑥;𝑢𝑢1)−𝐹𝐹(𝑥𝑥;𝑢𝑢2)‖∗ = sup{|𝐹𝐹(𝑠𝑠;𝑢𝑢1)−𝐹𝐹(𝑠𝑠;𝑢𝑢2)|𝑒𝑒−2𝐿𝐿𝐿𝐿|0≤𝑠𝑠≤𝑋𝑋} ≤ 

≤ sup�𝐿𝐿 ∫ |𝑠𝑠0 𝑢𝑢1(𝑣𝑣) − 𝑢𝑢2(𝑣𝑣)|𝑑𝑑𝑑𝑑 𝑒𝑒−2𝐿𝐿𝐿𝐿�0≤𝑠𝑠≤𝑋𝑋� ≤ 

≤ sup�𝐿𝐿 ∫ ‖𝑢𝑢1 − 𝑢𝑢2‖∗𝑒𝑒2𝐿𝐿𝐿𝐿
𝑠𝑠
0 𝑑𝑑𝑑𝑑 𝑒𝑒−2𝐿𝐿𝐿𝐿�0≤𝑠𝑠≤𝑋𝑋� = 

= sup �‖𝑢𝑢1 − 𝑢𝑢2‖∗
1
2 (𝑒𝑒2𝐿𝐿𝐿𝐿 − 1)𝑒𝑒−2𝐿𝐿𝐿𝐿�0≤𝑠𝑠≤𝑋𝑋� ≤

1
2
‖𝑢𝑢1 − 𝑢𝑢2‖∗. 

То есть, коэффициент сжатия существенно нелинейного (в области) или слабо 
нелинейного или норма линейного оператора (везде) типа Вольтерра могут быть 
сделаны сколь угодно малыми. 

Далее применяется Лемма 1.3. 
Следствие. Рассмотрим уравнение  

𝑢𝑢(𝑡𝑡) = 𝐹𝐹(𝑥𝑥;𝑢𝑢(𝑠𝑠): 0≤𝑠𝑠≤𝑥𝑥) ≔ ∫ 𝐺𝐺(𝑥𝑥, 𝑠𝑠,𝑢𝑢(𝑠𝑠))𝑑𝑑𝑑𝑑.  𝑥𝑥
0    (1.6) 

Если можно подобрать такую замкнутую ограниченную область Ω⊂C[0,X], что 
F(Ω) ⊂Ω, и функция G(t,s,u)∈C0.0,1([0,1] × [0,1]×R), то уравнение (1.6) имеет решение. 

ДОКАЗАТЕЛЬСТВО следует из того, что производная Gu’(t,s,u).определяющая 
коэффициент Липшица в (1.5), ограничена в Ω.., 

Мы будем применять аналогичный подход и к двумерным уравнениям типа 
Вольтерра.  
 1.3. Аксиоматический подход. После получения какого-либо частного 
результата (доказательства теоремы) производится анализ для выявления тех 
существенных особенностей исследуемого объекта, которые привели к заключению 
теоремы. После этого рассматривается более общий случай (например, вместо 
интегрального оператора в пространстве функций – общий вполне непрерывный 
оператор) и постулируются те условия (существенные особенности), которые были 
доказаны в частном случае. Такая методика была развита Я.В.Быковым [10]. 
 1.4. Перенос результатов на более сложные виды уравнений. 

Одним из способов такого переноса является композиция операторов. Если D1, 
D2- конкретные «хорошо изученные» операторы, то можно рассмотреть операторно-
дифференциальное уравнение вида  

D1(D2 (u))=Λ(u),                                                                             (1.7) 
где Λ– оператор из некоторого широкого класса, и воспользоваться полученными 
результатами для уравнений D1(u)=Λ1(u),D2(u)=Λ2(u). 
 В частности, по методу 1.1 получаем  u=D2−1(D1−1(Λ(u))). 

Наиболее систематически такой подход применялся А.Ж.Аширбаевой [8]. 



 
 

 Другой способ переноса – это переход от уравнений, содержащих необходимые 
компоненты искомой функции «в явном виде», к уравнениям, содержащих такие 
компоненты «в неявном виде».  Третий способ –это переход от скалярных уравнений 
к системам уравнений. Здесь необходимо оговорить условия, которые в скалярном 
случае выполняются автоматически, а в векторно-матричном случае могут не 
выполняться.  
Поскольку начальные задачи для дифференциальных и интегро-диффе-ренциальных 
уравнений сводятся к различным типам операторных и интегральных уравнений, 
приведем 
ТЕОРЕМА 1. [9]. Если конус К нормален и монотонный вполне непрерывный оператор 
А  преобразует конусный отрезок [x0,u0] в себя, то оператор А имеет по крайней мере 
одну неподвижную точку. 
Рассмотрим общее интегральное нелинейное уравнение типа Фредгольма 

𝑢𝑢(𝑡𝑡) = ∫ 𝐺𝐺(𝑡𝑡, 𝑠𝑠,𝑢𝑢(𝑠𝑠))𝑑𝑑𝑑𝑑, 𝐺𝐺∈𝑪𝑪.1
0     (1.8) 

 Как следствие Теоремы 1., в [13] доказана 
ТЕОРЕМА 2. Если  0 ≤ 𝐺𝐺(𝑡𝑡, 𝑠𝑠,𝑢𝑢) ≤ 𝐾𝐾(𝑡𝑡, 𝑠𝑠)𝑢𝑢 + 𝑏𝑏(𝑡𝑡, 𝑠𝑠)  и спектральный радиус 
оператора (1.2.5) меньше единицы, то уравнение (1.3.1) имеет неотрицательное 
решение. 

Для удобства ссылок также сформулируем следующие очевидные результаты.   
ЛЕММА 1. Если 1) для непустых множеств V⊂Yрешение операторного уравнения 

u=F(u), F:Y→Y                                      (1.9)  
может быть получено последовательными приближениями для любого на-чального 
значения u0; 
2) из u∈V следует F(u)∈V, 
то уравнение (1.9) имеет решение в V. 
 Применительно к пространствам функций получаем: 
 ЛЕММА 2. Если 1) решение операторно-функционального уравнения 

u(t)=F(t;u(s):s), F:C(R+) → C (R+)                             (1.10) 
может быть получено последовательными приближениями для любой начальной 
функции u0(t); 
2) существуют такие функции V−(t)≤V+(t)∈C(R+), что из  

V−(t)≤u(t) ≤V+(t)      (1.11) 
следует  

V−(t)≤F(y)(t) ≤V+(t),     (1.12) 
то уравнение (1.10) имеет решение, удовлетворяющее двойному неравенству (1.11). 

Заключение 



 
 

В ряде работ [10 -14] использовались методы, описанные в обобщенном виде в 
данной работе.  Вместо ссылки на принцип сжимающих отображений Банаха, 
использовался метод последовательных приближений (являющийся фактически 
повторным доказательством данного принципа), что удлиняет и усложняет изложение. 
Вместе с тем, практически принцип сжимающих отображений применяется именно в 
форме последовательных приближений, и можно применять в компьютерных расчетах. 
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