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Аннотация. В работе показана зависимость параметра регуляризации от погрешности 
ядра ( )nβ , т.е. ( )( )nα α β= , причем ( )( ) 0nα β →  при n →∞ . Построенное 

приближенное решение ( )( )( )z nα β  сходится к точному решению ( )0z t   при n →∞ . 

Доказана сходимость приближенного решения к точному решению, когда правая часть 
задана приближенно. Получена скорость сходимости приближенного решения. 
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зависящая от ( ),K t s . 
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при )()( 0 tutu =  сходится к точному решению уравнения (1) при 0, nα → →∞ . 
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представима в виде  
   0( ) ( ).n ng t G g tα α=        
Подставляя это в  
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получаем 
   0( ) ( ).n nz t D G g tα α α=        (2) 
Оценим разность 0( ) ( )nz t z tα α− .  
Функция )(tzα  как решение уравнения 
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Используя это и (3), из (5) получаем  
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Покажем, что 0 ( )g v  является ограниченной при 0→α . Действительно, )(0 tz  
удовлетворяет тождеству  
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Оценим ( )0, ( )M s z s : 
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Тогда из неравенства (6) получаем  
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Оценим разность 0( ) ( )nz t z tα − . Используя неравенство треугольника [ ]4 , 
неравенство (9), получаем 
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Рассмотрим функцию  
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Подставляя это в правую часть (10), получаем  
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 Доказана  
 Теорема 1. Пусть: 1) ядро ( , )K t s является симметричным, положительно 
определенным и непрерывным в квадрате 1,0 ≤≤ st ; 2) непрерывная функция 1( , )K t s  
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функции ядра ( , )K t s , соответствующие характеристическим значениям { }kµ ; 3) функция 
( , )M v z  удовлетворяет условию Липшица по z  в области 10 ≤≤ v , ∞<<∞− z , т.е.
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α  удовлетворяет условию (11), 7) параметр ( )nβ удовлетворяет неравенству (14). 
 Тогда решение ,0 ( )nz tα  уравнения 
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при )(0 tuu =  и при n →∞  сходится к точному решению уравнения  (1). 
Скорость сходимости удовлетворяет неравенству (12). 
Рассмотрим случай, когда вместо )(0 tu  задано приближенное значение )(tuδ .  

Допустим, что вместо функции )(0 tu  задана функция )(tuδ , удовлетворяющая 
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Через , ( )nz tα δ обозначим решение уравнения (15) при )(tuu δ= . В силу формулы (2), 
это решение представимо в виде   
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Покажем, что оператор nGα   удовлетворяет условию Липшица [ ]3 . 
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Вычитая из тождества (20) тождество (21), получаем  
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Отсюда в силу условия (13) имеем оценку [ ]2   
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Используя это, из неравенства (19) получаем  
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Здесь мы использовали неравенство (16) и неравенство Бесселя. 
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Рассмотрим функцию 

  ( )( )31
2 2

5 6 4( ) .K K n Kϕ α α α δ β−= + +  
Вычислим первую производную и приравняем её к нулю 

  ( ) ( )( )51
2 2

5 6 4
1 3 0.
2 2

K K n Kϕ α α α δ β− −′ = − + =  

Отсюда 



  
( )( ) ( )

1
2 1

2
6 4

5

3, .n K hK
K

α δ β δ
 

= + 
      

(25) 

Подставляя это в правую часть (24), получаем  

( )( ) ( )( )

( )( ) ( )( )

3 1
43 4 11 44

, 0 6 4 5 6 4(0,1)
5 5

3 3
4 41 1

5 54 4
6 4 5 6 4

5

3 3( ) ( )

31 4 .
3 3

n

C
z t z t K n K K K n K

K K

K KK n K K K n K
K

α δ δ β δ β

δ β δ β

−
−    

− ≤ + + + =   
   

    = + ⋅ + = +    
      

(26) 

 Теорема 2. Пусть: 1) выполняются все условия теоремы 1; 2) функция )(tuδ  
удовлетворяет неравенству (16); 3) параметр α  выбран по закону (25). 
 Тогда решение , ( )nz tα δ  уравнения (15) при )()( tutu δ=  и при 0, nδ → →∞  сходится 
к точному  решению уравнения (1). 
 Скорость сходимости удовлетворяет неравенству (26). 
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