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Введение 

Построению приближенного решения нелинейного операторного уравнения 
первого рода посвящены работы  [1],  [2], [3], [4],[5].  

В работе [6] в общем случае построен регуляризирующий оператор  для решения 
операторного уравнения первого рода Гаммерштейна, когда приближенно задан 
линейный положительный  оператор. 

В работе [7] построен регуляризирующий оператор  для решения операторного 
уравнения первого рода Гаммерштейна, когда приближенно задан самосопряженный 
положительный линейный оператор. 

В работе [8]  построено приближенное решение в случае, когда линейный 
оператор является  положительным и нелинейный оператор приближенно заданым.  

В работе [9]    построено приближенное решение в случае, когда линейный 
оператор является  самосопряженным положительным и нелинейный оператор 
приближенно заданым.  

В данной работе построено приближенное решение в случае, когда линейный 
самосопряженный положительный и нелинейный операторы являются приближенно 
задаными.  

1.  Постановка задач: 
 Рассмотрим операторное уравнение первого рода  
 ( )AF z u= ,  (1) 

где  - линейный самосопряженный, положительный оператор, ( )F ⋅  - 

нелинейный оператор, определённый в H и дифференцируемой  по Фреше. 
 Пусть: 1. априори известно, что уравнение (1)  при   имеет точное решение 

0z  и представимо в виде   

 0 0z Avσ= ,  где   , ;  (2) 

2. Линейный оператор  A  задан приближенно 

hA A h− ≤ ;                                                                                              (3) 

3. нелинейный оператор задан приближенно и имеет вид ( )
1 1

( )h hF z K z zσ= + , 
1hK – 

нелинейный оператор представим в виде 

 ( )
1 1 1( ) ( )hK z K z h K z= + ;  

4. нелинейные операторы 1( ), ( )K K⋅ ⋅  удовлетворяют условию Липщица 

 ,  [4] ,  (4) 

 1 1 1 2 1 1 2( ) ( )K z K z N z z− ≤ − ; (5) 

5. правая часть уравнения (1) задана приближенно 

:A H H→

0uu =

0, Rσ σ> ∈ H∈0ϑ

( ) ( )1 2 1 2 ,N NK z K z z z σ<− ≤ −



 0u uδ δ− ≤ . (6) 

 Таким образом, исследуемым оъбектом является расширенный класс 
нелинейного операторного уравнения первого рода с приближенными данными 
 1 1( ) ( )h h hA z A K z h A K z uδσ + + = . (7) 

2. Регуляризация 
 Наряду с уравнением (7) рассмотрим уравнение с малым параметром 

 1 1 1 1 1 1 1, , , , , , , , , , 1 1 , , 1 1 , ,( ) ( ) ( ) ( ) ( ) ( ) ( )h h h h h h h h h h h h h h h h hz Аz A А z АК z A А K z h AK z h A A K z uα α α α α α αα σ σ+ + − + + − + + − = .  (8) 

В  [4] работе доказано, что при любом  α>0  и  >0  имеет  место  неравенство 
 ( ) 1 1L E Aα α σ α− −= + ≤ . (9) 

С учетом (9) из уравнения (8), имеем 

 1 1 1 1 1 1, , , , 1 1 , , , , , , 1 1 , ,( ) ( ) ( ) ( ) ( ) ( ) ( )h h h h h h h h h h h h h h hz L u L AK z h L K z L A А z L A А K z h L A А К zα α α α α α α α α α α ασ= − − − − − − − − .  (10) 

Введем новый элемент 
1, ,h hyα по закону 

 1 1 1, , , , , ,( )h h h h h hy z L AK zα α α α= + . (11) 

В [5] доказано, что оператор ( )L AKα ⋅  является оператором сжатия.  Тогда из (11) 

получаем 

 ( )
1 1

1
, , , , , ( )h h h hz D y D E L AKα α α α α

−= = + ⋅ .  (12) 
В силу (12), из (10) имеем уравнение относительно элемента 

1, ,h hyα : 

1 1 1 1 1, , 1 1 , , , , , , 1 1 , ,( ) ( ) ( ) ( ) ( ) ( ) ( )h h h h h h h h h h h h hy L u h L K D y L A А D y L A А КD y h L A А К D yα α α α α α α α α α α α α ασ= − − − − − − − . (13) 

Dα  является Липшицовым оператором 

 ( ) 1
1 2 0 1 21D y D y q y yα α

−− ≤ − − .  (14) 

В [7] доказано, что при условии 1

0
lim 0
h

hα−

→
=  существует такое число , что 

при  постоянная Липшица для оператора 

( )1 1 1, , , , , , ,( ) ( ) ( ) ( )h h h h h h h h hT y L A A D y L A А КD yα α α α α α α ασ= − + −  

( ) ( ) ( ) 1 1
, 1 , 2 0 1 2( ) 1h hT y T y N q h y yα α σ α− −− ≤ + − −  

будет меньше единицы ( ) 1 1
1 0( ) 1 1q N q hσ α− −= + − <  . 

Введем новый элемент 
1, ,h htα по закону 

 1 1 1 1, , , , , , , ,( ) ( ) ( ) ( )h h h h h h h h h ht y L A A D y L A А КD yα α α α α α α ασ= + − + − .                            (15) 

Тогда из (15) получаем 

 ( )
1 1

1
, , , , , ( ) ( ) ( ) ( )h h
h h h h h hy D t D E L A A D L A А КDα α α α α α α ασ −= = + − ⋅ + − ⋅ .  (16) 

hDα  удовлетворяет неравенству  

 ( ) 1
1 2 1 1 21h hD t D t q t tα α

−− ≤ − − .  (17) 

σ

0 0h >

0h h<



Тогда из (13) имеем уравнение относительно элемента 
1, ,h htα ,  т.е. 

               
1 1 1, , 1 1 , , 1 1 , ,( ) ( ) ( )h h

h h h h h h ht L u h L K D D t h L A А К D D tα α α α α α α α α α= − − −                               (18) 

 В [9] доказано, что при условии 1
10

lim 0
h

hα −

→
=  существует такое число

01 0h > , что 

при 
01h h<  постоянная Липшица для оператора 1 1 ( )hh L K D Dα α α ⋅  будет меньше единицы 

( ) ( )1 1 1
2 0 1 1 11 1 1q q q h Nα− − −= − − <  . 

Введем новый элемент 
1, ,h hxα по закону 

 1 1 1, , , , 1 1 , ,( )h
h h h h h hx t h L K D D tα α α α α α= + .                                                                        (19) 

Тогда из (15) получаем 

 ( )1 1

1 1

1, ,
, , , , 1 1, ( )h h h h h
h h h ht D x D E h L K D Dα α α α α α α

−
= = + ⋅ .  (20) 

1,h hDα
 удовлетворяет неравенству  

 ( )1 1
1, ,

1 2 2 1 21h h h hD x D x q x xα α
−− ≤ − − .  (21) 

Тогда из (16) имеем уравнение относительно элемента 
1, ,h hxα ,  т.е. 

                          1

1 1

,
, , 1 1 , ,( ) ( )h hh
h h h h hx L u h L A А К D D D xα α α α α α α= − −                                           (22) 

   К уравнению (18) применяем метод  последовательных приближений. За 
нулевые приближения возьмем элемент 

 0x L uα= .  (23) 

Последующие приближения определяются по формуле  
 1,

0 1 1 1( ) ( )h hh
k h kx x h L A А К D D D xα α α α −= − −   (24) 

Докажем сходимость последовательности { } 0k k
x ∞

=
. 

Сходимость последовательности { } 0k k
x ∞

=
и функционального ряда вида  

  [ ] [ ] [ ]0 1 0 2 1 1... ...k kx x x x x x x −+ − + − + + − +   (25) 

эквивалентны.  
Оценим нулевое приближение 0t     

 1
0x uα −≤ . (26) 

Полагая , из (24), имеем 
 1 1 1, , ,1 1

1 0 1 1 0 1 1 0 1 1 0( ) ( ) ( ) , ( )h h h h h hh h h
hx x h L A А К D D D x h h К D D D x h h p p К D D D xα α α α α α α α α αα α− −− = − ≤ ≤ = .     (27) 

Полагая  в (24)   и  вычитая из первого второе, получаем 
 ( ) ( ) ( ) ( )1 1

2 1 1 1, , 1
2 1 1 1 1 1 0 1 1 0 1 2( )( ( ) ( )) 1 1 1h h h hh h

hx x h L A А K D D D x K D D D x h h pN q q qα α α α α α α α − − −−− ≤ − − ≤ − − −   (28) 

По методу математической индукции можно доказать что, , 2k N k∀ ∈ ≥ , 

справедливо неравенство 
      ( ) ( ) ( ) ( )( ) 11 1 11

1 1 1 0 1 21 1 1
kk

k kx x h h pN q q qα
−− − −−

−− ≤ − − − .                                           (29) 

Таким образом, ряд (25)   мажорируется числовым рядом 

1k =

2k = 1k =



                 ( ) ( ) ( ) ( )( ) 11 1 11
1 1 0 1 2

1
1 1 1

kk

k
h h pN q q qα

∞ −− − −−

=

− − −∑                                                  (30) 

Допустим, что 1( , )h hα зависит так, чтобы выполнялось условие 

1

1
1 1, 0

lim ( , ) 0
h h

h h h hα −

→
=                                                                                                         (31) 

Из условия (31) следует, что существуют числа 0 1,h h  такие, что 

( ) ( ) ( )1 1 11
3 1 1 0 1 2 0 1 11 1 1 1, ,q h h pN q q q h h h hα − − −−= − − − < < <  .                                (32) 

Условие (32) обеспечивает сходимость ряда (30) и сумма ряда равна . Тогда, ряд (25) 
также является сходящимся. Сумму ряда (25) обозначим через 

1, ,h hxα  . В силу 

эквивалентности сходимости { } 0k k
x ∞

=
  и  ряда (25) имеем 

1, ,lim k h hk
x xα→∞
=                                                                  

 
(33) 

1,
1 1( ) ( )h hh

hh L A А К D D Dα α α α− ⋅ оператор является непрерывным при , переходим к 

пределу в (24) и с учетом (33), имеем  
 1

1 1

,
, , 0 1 1 , ,( ) ( )h hh
h h h h hx x h L A А К D D D xα α α α α α= − − .                                                                      (34) 

Следовательно, оператор 1,
1 1( ) ( )h hh

hE h L A А К D D Dα α α α+ − ⋅   является обратимым. Обратный 

оператор обозначим  ( )1

1

1,
, , 1 1( ) ( )h hh
h h hI E h L A А К D D Dα α α α α

−
= + − ⋅ . 

Оператор 
1, ,h hIα   является  Липшицовым 

 ( )
1 1

1
, , 1 , , 2 3 1 21h h h hI x I x q x xα α

−− ≤ − − .  (35) 

 Тогда из (22), имеем 

 1 1, , , ,h h h hx I L uα α α= . (36) 
Учитывая (36), (20), (16) из (12) получаем решение уравнения (8)  

 
1 1

1

, ,
, ,

h h h hh
h hz D D D I L u

α α α α α α= . (37) 

Таким образом, доказано. 
ТЕОРЕМА 1. Пусть: 1.  Оператор hA  линейный самосопряженный 

положительный оператор, удовлетворяет условию hA A h− ≤ ; 2. Нелинейный оператор 

, представим в виде ( )
1 1

( )h hF z K z zσ= + ; 3. Параметр 1( , )h hα  удовлетворяет условию 

(31). Тогда уравнение (8) при любом ,  и 
00 1 1,h h h h< <  имеет единственное 

решение. 
 Решение уравнения (8) при  обозначим через 1

,0

,h hz
α

, тогда в силу (10)  

представимо в виде  

 1 1 1 1 1 1

,0

, , , , , ,
0 1 1 1 1( ) ( ) ( ) ( ) ( ) ( ) ( )h h h h h h h h h h h h

h h hz L u L AK z h L K z L A А z L A А K z h L A А К z
α α α α α αα α α α α ασ= − − − − − − − − .  (38) 

Рассмотрим разность 1

,0

,
0

h hz z
α

−  

 1 1 1 1 1 1

,0

, , , , , ,
0 0 1 1 1 1 0( ) ( ) ( ) ( ) ( ) ( ) ( )h h h h h h h h h h h h

h h hz z L u L AK z h L K z L A А z L A А K z h L A А К z z
α α α α α αα α α α α ασ− = − − − − − − − − − . (39)  

∞→k

( )hF z

Η∈u 0,0 >> σα

0uu =



По предположению   0 0 0( )u Az AK zσ= + . Переходим в норму разности  
1 1 1 1 1 1

,0

1 1 1 1

, , , , , ,
0 0 1 1 1 1 0

, , , ,
0 0 1 1 1 0 0 0

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ( ) ( ) ( ( ) ( ) ( )( ) ( )( ( ) ( ))

h h h h h h h h h h h h
h h h

h h h h h h h h
h h

z z L u L AK z h L K z L A А z L A А K z h L A А К z z

L z L A K z K z h L K z K z L A А z z L A А K z K z
α α α α α α

α α α α

α α α α α α

α α α α α

σ

α σ

− = − − − − − − − − − =

= + − + − + − − + − − +

1,
1 1 1 0 1 1 0 1 1 1 0 0

1 1 0 1 0 1 1

1 1
0 1 1 1

( )( ( ) ( )) ( ( ) (0)) (0) ( ) ( )( ( ) (0))

( )( ( ) (0)) ( )( ( ) (0)) ( ) (0) ( ) (0)

( ( )

h h
h h h

h h h h

h L A А К z К z h L K z K h L K L A А z L A А K z K

h L A А К z К L A А K z K L A А K h L A А К

v N h N N h h h

αα α α α α

α α α α

σ

α α σ α α− − −

+ − − + − + + − + − − +

+ − − + − − + − + − ≤

≤ + + + + + 1

,0

,1 1 1
1 0 0 1 1 0

1
1 1 0

) (( ) (0) ) ( (0) )

( (0) ).

h hN z z h N z K h N z K

h h N z K
α

α σ α

α

− −

−

− + + + + + +

+ +

 
(40) 

Из (40),  имеем  оценку 
1

,0

, 1 1 1
0 0 0 1 1 0 1 1 0(( ) (0) ) ( (0) ) ( (0) ).h hz z v h N z K h N z K h h N z K

α
α α σ α α− − −− ≤ + + + + + + + , (41)     

Найдем минимум правой части (41), имеем 

( ) ( )1
1 0 1 1 2 3 1, ,h h v hc h c c h hα −= + + .                                                                           (42) 

Подставляем (42) в (41) имеем 
( )1

,0

,
0 0 1 1 2 3 1(1 ) , .h hz z v hc h c c h h

α
− ≤ + + +                                                                      (43) 

ТЕОРЕМА 2.  Пусть: 1.  выполнены все условия теоремы 1; 2.  при   
уравнение (1) имеет точное решение; 3. Зависимость параметра регуляризации от 
погрешности операторов определяется по формуле (42). Тогда решение 1

,0

,h hz
α

  уравнения 

(8) при 1, 0h h →  сходится к точному решению уравнения (1), скорость сходимости 

удовлетворяет условию (43). 
Пусть правая часть уравнения (1) задана с погрешностью .  1

,

,h hz
α δ

 есть решение 

уравнения (8) при . Тогда в силу формулы (10) решение  представимо в виде 
1 1 1 1 1 1

, , , , , ,

, , , , , ,
1 1 1 1( ) ( ) ( ) ( ) ( ) ( ) ( )h h h h h h h h h h h h

h h hz L u L AK z h L K z L A А z L A А K z h L A А К z
α δ α δ α δ α δ α δ α δα δ α α α α ασ= − − − − − − − −  (38) 

Оценим разность, 1

,

,
0

h hz z
α δ

−   

                                              1

,

, 1 1 1 1
0 0 1 1 2 3 1 4 .h hz z v h c h c c h h c

α δ
α α α α δα− − − −− ≤ + + + +   (44) 

 Минимизируя правую часть, соотношение  (44) по , имеем 
                                                   ( ) ( )1

1 0 1 1 2 3 1 4, , ,h h v hc h c c h h cα δ δ−= + + +                        (45)  

  Тогда, имеем оценку 

                                                           ( )1

,

,
0 0 1 1 2 3 1 4(1 ) ,h hz z v hc h c c h h c

α δ
δ− ≤ + + + +    (46) 

    ТЕОРЕМА 3.  Пусть: 1.выполнены все условия теоремы 3; 2.элемент  
удовлетворяет неравенству (6); 3. Зависимость параметра регуляризации от 
погрешностей определяется по формуле (45). Тогда решение уравнения (8) при 

1, , 0h h δ →  является приближенным решением уравнения (1). Скорость сходимости 

удовлетворяет условию (46). 
3. Выводы и результаты исследования 

0uu =

δ

δuu =

α

δu



Обоснования  регуляризируемости решения заключаются в следующих результатах 
исследования: 

1. В пространстве Гильберта  построено приближенное решение нелинейного 
операторного уравнения первого рода, когда приближенно заданы операторы; 

2. Получен выбор параметра регуляризации в зависимости от погрешностей 
приближенно заданных исходных данных; 

3. Установленна сходимость и найдена оценка скорости сходимости приближенного 
решения к точному решению. 
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