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Аннотация. В данной работе рассмотрен алгоритм анализа для определения 

способности действия по нервному волокну. Процесс оформления с использованием систем 

параболической и гиперболической моделей, отражающих различные физические аспекты 

распространения сигнала. Параболическая модель описывает медленное поведение 

распространяющихся процессов, таких как теплопроводность, а гиперболическая модель 

более точно моделирует быстрые изменения, характерные для нервных импульсов. Особое 

внимание уделено реализации связующего интеграла, который обеспечивает согласованное 

взаимодействие между моделями моделей.  

В данной статье разработан алгоритм численной реализации обратной 

параболической задачи, основанный на использовании математической модели, 

описывающей распространение потенциала действий в нервном волокне. Проведенный 

расчетный анализ позволяет оценить точность и устойчивость предложенного метода, а 

также его эффективность для больших временных и пространственных масштабов. 

Применение данного метода может значительно повысить точность моделей нейронных 

сетей, улучшив понимание процессов передачи данных в сети. 

Ключевые слова: Нервное волокно; распространение потенциала; одномерная; 

обратная параболическая задача; алгоритм; численное решение; компьютерная реализация. 
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Аннотация. Бул макалада нерв жипчеси боюнча иш-аракет жөндөмдүүлүгүн аныктоо 

үчүн анализ алгоритми талкууланат. Сигналдын таралышынын ар кандай физикалык 

аспектилерин чагылдырган параболикалык жана гиперболикалык моделдик системаларды 

колдонуу менен долбоорлоо процесси. Параболикалык модель жылуулук өткөрүмдүүлүк 

сыяктуу таралуучу процесстердин жай жүрүм-турумун сүрөттөйт, ал эми гиперболикалык 

модель нерв импульстарына мүнөздүү тез өзгөрүүлөрдү тагыраак моделдейт. Моделдик 
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моделдердин ортосундагы ырааттуу өз ара аракеттенүүнү камсыз кылуучу бириктирүүчү 

интегралды ишке ашырууга өзгөчө көңүл бурулат. 

Бул макалада нерв талчасында аракет потенциалынын таралышын сүрөттөгөн 

математикалык моделди колдонуунун негизинде тескери параболикалык маселенин сандык 

ишке ашыруу алгоритми иштелип чыккан. Жүргүзүлгөн эсептөө анализи сунуш кылынган 

ыкманын тактыгын жана туруктуулугун, ошондой эле чоң убакыт жана мейкиндик 

масштабдары үчүн анын натыйжалуулугун баалоого мүмкүндүк берет. Бул ыкманы 

колдонуу тармактагы маалыматтарды берүү процесстерин түшүнүүнү жакшыртып, 

нейрондук тармак моделдеринин тактыгын бир топ жогорулата алат. 

Негизги сөздөр: Нерв жипчелери; потенциалды жайылтуу; бир өлчөмдүү; тескери 

параболикалык маселе; алгоритм; сандык чечим; компьютердик ишке ашыруу. 
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Annotation. This paper discusses an analysis algorithm for determining the ability of action 

along a nerve fiber. Design process using parabolic and hyperbolic model systems that reflect 

various physical aspects of signal propagation. The parabolic model describes the slow behavior of 

propagating processes such as heat conduction, while the hyperbolic model more accurately models 

the rapid changes characteristic of nerve impulses. Particular attention is paid to the 

implementation of the connecting integral, which ensures consistent interaction between model 

models. 

This article develops an algorithm for the numerical implementation of the inverse parabolic 

problem, based on the use of a mathematical model that describes the propagation of action 

potential in a nerve fiber. The computational analysis carried out allows us to evaluate the 

accuracy and stability of the proposed method, as well as its effectiveness for large time and spatial 

scales. The use of this method can significantly increase the accuracy of neural network models, 

improving the understanding of data transmission processes in the network. 

Key words: Nerve fiber; capacity dissemination; one-dimensional; inverse parabolic problem; 

algorithm; numerical solution; computer implementation. 

 

Введение. Моделирование распространения потенциала действия по нервному 

волокну является одной из ключевых задач математической биофизики и нейрофизиологии, 

поскольку оно позволяет глубже понять механизмы передачи нервных сигналов и 

потенциала действия. Динамика этого процесса часто описывается уравнениями в частных 

производных, включающими как параболические, так и гиперболические компоненты. 

Параболическая модель обычно используется для описания процессов диффузии, тогда как 

гиперболическая модель подходит для моделирования волновых процессов, характерных для 

быстрого распространения нервных импульсов. Сочетание обеих моделей позволяет 

получить более полное и точное описание динамики. 
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Одной из сложностей является корректная реализация связующего интеграла, 

который объединяет обе модели и обеспечивает согласованное поведение решения. 

Связующий интеграл позволяет избежать конфликтов между параболическим и 

гиперболическим решениями, создавая единое поле потенциала действия, которое отражает 

как локальные, так и глобальные свойства нервного импульса. Однако численная реализация 

такого интеграла требует тщательного анализа алгоритма, учитывающего точность и 

устойчивость вычислений при больших временных и пространственных масштабах. 

Цель данной работы – проанализировать численный алгоритм для решения задачи 

распространения потенциала действия, включающий связующий интеграл между 

параболической и гиперболической моделями. Оценка эффективности алгоритма и 

устойчивости его реализации позволит не только лучше понять механизмы распространения 

нервного сигнала, но и расширить возможности применения численных моделей в 

нейробиологии и биоинженерии. 

Постановка задачи. Математическая модель процесса распространения импульса по 

аксону (по нервному волокну) описывается параболическим уравнением [1] 
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   xx am  ,  - удельное сопротивление плазмы и нервной волокны,  xCm  - емкость на 

единицу площади мембраны, l -толщина мембраны,  txu ,  - плотность электрического тока в 

точке x  во времени t . 

Обратная параболическая задача заключается в определении одного из коэффициентов 

уравнения (1) и функции  txu ,  при дополнительной информации вида 
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Используя методику Кабанихина [2, стр. 342] приводим обратную задачу (1) – (3) к 

обратной задаче уравнения гиперболического типа. 
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Теоретическое обоснование. Рассмотрим связь между решениями прямой задачи 

параболического типа (1) и гиперболического типа (4). Она дается интегралом 
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где     txVtxu ,,,  - решения задач параболической и гиперболической соответственно. 

В обратных задачах параболического и гиперболического типа связующий интеграл 

будет 

      ,,

0

 dxG
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gx
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p  ,  - решения обратных задач параболической и гиперболической 

соответственно. 

Предположим, что решение прямой гиперболической задачи (4)  txV ,  достаточно 

гладкие, растут при t  не быстрее, чем ,0, tCe  то формула (7) устанавливает связь 

между решениями прямых задач параболической (1) и гиперболической (4) взаимно 

однозначное соответствие. [2]. 

Поэтому, теоремы единственности, доказанные для коэффициентных обратных задач 

для гиперболических уравнений, могут быть перенесены на соответствующие 

единственности обратных задач для параболических уравнений [2]. 

Пусть, решение обратной гиперболической задачи  xag  достаточно гладкая 

функция и растет при t не быстрее, чем ,0, tCe то формула (8) устанавливает связь 

между решениями обратных задач параболической (1) и гиперболической (4) взаимно 

однозначное соответствие [2]. 

Численное обоснование. Рассмотрим численное решение связующего интеграла (8) 

между решениями обратной задачи параболического уравнения и обратной задачи 

гиперболического уравнения.  
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Введем также сеточные функции 
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Используя метод прямоугольников для интеграла (8) получим 
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Отметим, что по свойству метода прямоугольников численное решение сеточной 

функции (9) сходится к точному решению (8) в порядке  .O  

Если распишем (9), то получим следующие вычисления: 
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В численных решениях нами были взяты следующие значения: 

      .2
,,200,,0,,0,4

N
Ttau

N
TtaNTTtT


   
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- Таблица 1. РПДНВ-1-8Waves^21_Параб 

№ 

рис

унк

а 

 

Восстановляе

мая 

функция 

roa(z) 

z cm1 ra1 rom1 

Ошибк

а 

измере

ния 

max % 

Относите

льная 

погрешно

сть между 

точным и 

k-p-p 

решением 

1.1  z 28.6
2

cos1.3

 

0.2  z 28.6
2

cos1.2

 

 z 28.6
2

cos6.2

 

 z 28.6
2

cos6.3

 

±0.01 5.3168 

1.2  z 28.6
2

cos1.3

 

0.4  z 28.6
2

cos1.2   z 28.6
2

cos6.2

 

 z 28.6
2

cos6.3  
±0.01 5.3161 

1.3  z 28.6
2

cos1.3

 

0.6  z 28.6
2

cos1.2

 

 z 28.6
2

cos6.2

 

 z 28.6
2

cos6.3  
±0.01 5.3149 

1.4  z 28.6
2

cos1.3

 

0.8  z 28.6
2

cos1.2   z 28.6
2

cos6.2

 

 z 28.6
2

cos6.3  
±0.01 5.3133 

1.5  z 28.6
2

cos1.3

 

1  z 28.6
2

cos1.2

 

 z 28.6
2

cos6.2

 

 z 28.6
2

cos6.3  
±0.01 18.8744 

2.1  z 71.4
2

cos1.3

 

1  z 28.6
2

cos1.2

 

 z 28.6
2

cos6.2

 

 z 28.6
2

cos6.3  
±0.01 12.8742 

2.2  z 14.3
2

cos1.3

 

1  z 28.6
2

cos1.2   z 28.6
2

cos6.2

 

 z 28.6
2

cos6.3  
±0.01 15.8362 

2.3  z 57.1
2

cos1.3

 

1  z 28.6
2

cos1.2

 

 z 28.6
2

cos6.2

 

 z 28.6
2

cos6.3  
±0.01 18.8586 

2.4  z 785.0
2

cos1.3

 

1  z 28.6
2

cos1.2

 

 z 28.6
2

cos6.2

 

 z 28.6
2

cos6.3  
±0.01 19.5716 

2.5  z 393.0
2

cos1.3

 

1  z 28.6
2

cos1.2

 

 z 28.6
2

cos6.2

 

 z 28.6
2

cos6.3  
±0.01 19.7673 

3.1  z 28.6
2

cos1.3

 

1  z 28.6
2

cos1.2

 

 z 28.6
2

cos6.2

 

 z 28.6
2

cos6.3

 

±0.0005 13.0043 

3.2  z 28.6
2

cos1.3

 

1  z 28.6
2

cos1.2   z 28.6
2

cos6.2

 

 z 28.6
2

cos6.3  
±0.001 13.3078 

3.3  z 28.6
2

cos1.3

 

1  z 28.6
2

cos1.2   z 28.6
2

cos6.2

 

 z 28.6
2

cos6.3  
±0.002 13.9165 

3.4  z 28.6
2

cos1.3

 

1  z 28.6
2

cos1.2

 

 z 28.6
2

cos6.2

 

 z 28.6
2

cos6.3  
±0.003 14.5277 

3.5  z 28.6
2

cos1.3

 

1  z 28.6
2

cos1.2

 

 z 28.6
2

cos6.2

 

 z 28.6
2

cos6.3

 

±0.004 15.1413 

4.1  z 28.6
2

cos1.3

 

0.6  z 28.6
2

cos1.2   z 28.6
2

cos6.2

 

 z 28.6
2

cos6.3

 

±0.01 5.3149 

4.2  z 28.6
2

cos1.2

 

0.6  z 28.6
2

cos1.2   z 28.6
2

cos6.2

 

 z 28.6
2

cos6.3  
±0.01 8.6050 

4.3  z 28.6
2

cos1.1

 

0.6  z 28.6
2

cos1.2   z 28.6
2

cos6.2

 

 z 28.6
2

cos6.3  
±0.01 10.9452 
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- Таблица 2. РПДНВ-2Waves^4_Параб 

№ 

рисунка 

Восстановляемая 

 функция 

 roa(z) 

z cm1 ra1 rom1 

Ошибка 

измерения 

max % 

Относительная 

погрешность 

между точным и 

k-p-p решением 

1.1    zzroa  14.3cos13 4
 

0.2 1 1 1 ±0.001 2.9187 

1.2    zzroa  14.3cos13 4
 

0.4 1 1 1 ±0.001 3.1905 

1.3    zzroa  14.3cos13 4
 

0.6 1 1 1 ±0.001 3.1762 

1.4    zzroa  14.3cos13 4
 

0.8 1 1 1 ±0.001 9.5722 

1.5    zzroa  14.3cos13 4
 

1 1 1 1 ±0.001 9.6533 

1.6    zzroa  14.3cos13 4
 

2 1 1 1 ±0.001 10.0797 

1.7    zzroa  14.3cos13 4
 

3 1 1 1 ±0.001 11.3908 

1.8    zzroa  14.3cos13 4
 

4 1 1 1 ±0.001 14.4532 

1.9    zzroa  14.3cos13 4
 

5 1 1 1 ±0.001 15.2362 

1.10    zzroa  14.3cos13 4
 

6 1 1 1 ±0.001 22.3972 

2.1    zzroa  14.3cos13 4
 

4 1 1 1 ±0.0001 13.0161 

2.2    zzroa  14.3cos13 4
 

4 1 1 1 ±0.002 16.0664 

2.3    zzroa  14.3cos13 4
 

4 1 1 1 ±0.003 17.6972 

2.4    zzroa  14.3cos13 4
 

4 1 1 1 ±0.004 19.3456 

2.5    zzroa  14.3cos13 4
 

4 1 1 1 ±0.005 21.0118 

3.1    zzroa  14.3cos8 4
 

4 1 1 1 ±0.001 12.1435 

3.2    zzroa  14.3cos7 4
 

4 1 1 1 ±0.001 12.0024 

3.3    zzroa  14.3cos6 4
 

4 1 1 1 ±0.001 12.6227 

3.4    zzroa  14.3cos5 4
 

4 1 1 1 ±0.001 13.1797 

3.5    zzroa  14.3cos4 4
 

4 1 1 1 ±0.001 9.8415 

4.1    zzroa  28.6cos13 4
 

4 1 1 1 ±0.001 14.5162 

4.2    zzroa  71.4cos13 4
 

4 1 1 1 ±0.001 14.3814 

4.3    zzroa  57.1cos13 4
 

4 1 1 1 ±0.001 14.3301 

4.4    zzroa  785.0cos13 4
 

4 1 1 1 ±0.001 13.6263 
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- Таблица 3. РПДНВ-8Waves^2_Параб 

№ 

рисунка 

Восстановляемая 

функция 

roa(z) 

z cm1 ra1 rom1 

Ошибка 

измерения 

max % 

Относительная 

погрешность 

между точным и 

k-p-p решением 

1.1    zzroa  58.12cos2.03 2
 0.2 1 1 1 ±0.001 0.6170 

1.2    zzroa  58.12cos2.03 2
 0.4 1 1 1 ±0.001 0.6178 

1.3    zzroa  58.12cos2.03 2
 0.6 1 1 1 ±0.001 0.7258 

1.4    zzroa  58.12cos2.03 2
 0.8 1 1 1 ±0.001 0.7228 

1.5    zzroa  58.12cos2.03 2
 1 1 1 1 ±0.001 0.9082 

1.6    zzroa  58.12cos2.03 2
 2 1 1 1 ±0.001 1.4326 

1.7    zzroa  58.12cos2.03 2
 3 1 1 1 ±0.001 2.4626 

1.8    zzroa  58.12cos2.03 2
 4 1 1 1 ±0.001 3.6954 

2.1    zzroa  58.12cos2.03 2
 4 1 1 1 ±0.01 13.1167 

2.2    zzroa  58.12cos2.03 2
 4 1 1 1 ±0.02 24.4002 

2.3    zzroa  58.12cos2.03 2
 4 1 1 1 ±0.002 4.7030 

2.4    zzroa  58.12cos2.03 2
 4 1 1 1 ±0.003 5.7181 

2.5    zzroa  58.12cos2.03 2
 4 1 1 1 ±0.004 6.7409 

2.6    zzroa  58.12cos2.03 2
 4 1 1 1 ±0.005 7.7809 

3.1    zzroa  58.13cos2.08 2
 4 1 1 1 ±0.01 16.1764 

3.2    zzroa  58.11cos2.07 2
 4 1 1 1 ±0.01 15.7121 

3.3    zzroa  58.10cos2.06 2
 4 1 1 1 ±0.01 13.1178 

3.4    zzroa  58.9cos2.05 2
 4 1 1 1 ±0.01 13.1116 

3.5    zzroa  58.8cos2.04 2
 4 1 1 1 ±0.01 13.1291 

4.1    zzroa  58.12cos1.03 2
 4 1 1 1 ±0.01 13.0888 

4.2    zzroa  58.12cos3.03 2
 4 1 1 1 ±0.01 13.1515 

4.3    zzroa  58.12cos4.03 2
 4 1 1 1 ±0.01 13.2187 

4.4    zzroa  58.12cos5.03 2
 4 1 1 1 ±0.01 13.3023 
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- Таблица 4. РПДНВ-12Pulse_Параб 

№ рисунка 

Восстановляемая 

 функция 

 roa(z) 

z cm1 ra1 rom1 

Ошибка 

измерения 

max % 

Относительная 

погрешность между 

точным и k-p-p 

решением 

1.1 Импульсная 0.2 1 1 1 ±0.001 0.9902 

1.2 Импульсная 0.4 1 1 1 ±0.001 1.0583 

1.3 Импульсная 0.6 1 1 1 ±0.001 1.1293 

1.4 Импульсная 0.8 1 1 1 ±0.001 1.2029 

1.5 Импульсная 1 1 1 1 ±0.001 1.2793 

1.6 Импульсная 2 1 1 1 ±0.001 1.7079 

1.7 Импульсная 3 1 1 1 ±0.001 2.5639 

1.8 Импульсная 4 1 1 1 ±0.001 3.9156 

2.1 Импульсная 4 1 1 1 ±0.01 17.8338 

2.2 Импульсная 4 1 1 1 ±0.02 35.1803 

2.3 Импульсная 4 1 1 1 ±0.002 5.3344 

2.4 Импульсная 4 1 1 1 ±0.003 6.7681 

2.5 Импульсная 4 1 1 1 ±0.004 8.2845 

2.6 Импульсная 4 1 1 1 ±0.005 9.8330 

 
- Таблица 5. РПДНВ-Saw_Параб 

№ рисунка 

Восстановляемая 

функция 

roa(z) 

t cm1 ra1 rom1 

Ошибка 

измерения 

max % 

Относительная 

погрешность между 

точным и k-p-p 

решением 

1.1 Ступенчатая 0.2 1 1 1 ±0.001 7.4893 

1.2 Ступенчатая 0.4 1 1 1 ±0.001 7.7118 

1.3 Ступенчатая 0.6 1 1 1 ±0.001 8.0031 

1.4 Ступенчатая 0.8 1 1 1 ±0.001 8.4246 

1.5 Ступенчатая 1 1 1 1 ±0.001 8.8696 

1.6 Ступенчатая 2 1 1 1 ±0.001 12.2018 

1.7 Ступенчатая 3 1 1 1 ±0.001 17.2374 

1.8 Ступенчатая 4 1 1 1 ±0.001 23.3386 

2.1 Ступенчатая 2 1 1 1 ±0.0005 11.6476 

2.2 Ступенчатая 2 1 1 1 ±0.001 12.2018 

 

Вывод. Численный анализ и компьютерная реализация. 

В качестве искомой тестовой функции обратной задачи в начале мы взяли 

косинусообразную функцию ( эта функция соответствует на требования искомой функции), 

   zz
a

28.62cos1.3  . Эта функция положительная, при   1.20  z
a

z  четная, 

дифференцируемая. 
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В начале мы проверили до какого момента мы сможем вычислить, то есть, созданный 

нами алгоритм и разработанная нами программа до какого расстояния сможет вычислить 

решение обратной задачи, в данном случае для параболической задачи. 

Таким образом мы последовательно увеличивали расстояния z от 0.2 до 1 (условно 

метр, в нашем случае распространения потенциала действий нервного волокна). Как видно 

из табл.1 РПДНВ-1-8Waves^21_Параб, пункты 1.1–1.5 относительная погрешность 

увеличивается от 5.31% - 18.87%. Это означает, в этом случае искомой функции сможем 

провести вычисления не более 1 условной единицы (м). 

Отметим, что вычисления решения обратной задачи в программе РПДНВ-1-

8Waves^21_Параб, производились при других параметрах, которые когда они непрерывные 

функции:    zzCm 28.62cos1.21  ,    zzra 28.62cos6.21  ,    zzm 28.62cos6.31  . 

Таким образом, с увеличением расстояния вычисления обратной задачи увеличивается 

относительная погрешность, что подтверждает теоретической оценки погрешности. 

Из-за ограниченности страницы здесь мы привели только рис.1. 

В пунктах 2.1–2.5 таблицы РПДНВ-2Waves^4_Параб, последовательно уменьшаем   

от 4.71 до 0.393. Во всех вычислениях мы условно ввели обозначения  ,,  где 

   zz
a

  2cos . 

Выявлено, что с уменьшением   относительная погрешность увеличивается. Здесь 

норма для   должна быть 393.0 . Тогда относительная погрешность составляет 19.77% и 

привели рис.2 этому случаю. 

В следующем шаге мы изменили  - погрешность измерения, то есть, 

последовательно увеличивали    от 0005.0  до 004.0 . В этом случае относительная 

погрешность определения решения обратной задачи параболического уравнения также 

увеличивается от 13% до 15.14% (см. пункты 3.1–3.5 таблицы РПДНВ-2Waves^4_Параб). 

Анализируя мы остановились на том, что  - погрешность измерения можно взять до 0.01. 

В последних пунктах 4.1–4.3 табл.1 мы уменьшали   - свободный член от 3.1 до 1.1. 

Тогда нами выяснено, что относительная погрешность определения решения обратной задачи 

параболического уравнения  увеличивается от 5.31% до 11%. 

Анализируя, мы выяснили   уменьшить до 0 и привели рис.4. 

В табл.2. РПДНВ-2Waves^4_Параб приведены решения обратной задачи 

параболического уравнения, когда искомая функция непрерывная функция вида 

   zz
a

  4cos  , где  ,785.028.6,14.3,1;48,13    а другие параметры 

уравнения 1111  mraCm  . 

В пунктах 1.1–1.10 табл.2 расчеты приведены для z, z меняется от 0.2 до 6, то есть, 

.001.0,14.3,1,13,62.0  z  Как видно из табл.2 относительная 

погрешность между точным и конечно-разностным регуляризованным решением (к-р-р-р) 

обратной задачи параболического уравнения также последовательно увеличивается от 2.91% 

до 22.40%.  

Таким образом, в этом случае алгоритм работает при z=5 у.е. Этот пример также 

подтверждает теоретически обоснованную оценку. Здесь мы дали рис.5. 
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В следующем этапе (пункты 2.1–2.5) восстановили в обратной задаче параболического 

уравнения, функции    zz
a

14.34cos13 , при z=4, 1111  mraCm  , а погрешность 

измерения   последовательно увеличивали от 001.0  до 005.0 , то есть, 005.0001.0  . 

Как показаны в пунктах 2.1–2.5 относительная погрешность между точным и к-р-р 

решением увеличивается от 13.01% до 21%. Таким образом,    можно взять до 0.004. 

Приведен график (рис.6). 

В пунктах 3.1-3.5 табл.2 мы свободный член   уменьшили от 8 до 4, тогда 

погрешность уменьшается. Дан рис.7. 

В следующем шаге уменьшили   от 6.2 до 0.785. Относительная погрешность 

уменьшается, см. пункты 4.1–4.5. Приведен рис.8. 

В табл.3 РПДНВ-8Waves^2_Параб. также восстановили непрерывную функцию 

     ,,,2cos zza   даны в этой таблице, 1111  mraCm  . Здесь тоже такое 

восстановление как в предыдущих табл.1 и 2. 

В табл.4. РПДНВ-12Pulse_Параб дано восстановление импульсной функции, дано в 

рис.9 и 10. Здесь также относительная погрешность увеличивается, что и подтверждает 

теоретическую оценку. ,42,0 z 1111  mraCm  . 

А в табл.5. РПДНВ-Saw_Параб ввели расчеты восстановления ступенчатой функции 

(рис.15 и 16). ,31,0 z  1111  mraCm  . Также относительная погрешность между 

точным и к-р-р решениями повышается. 

Замечание: Здесь были взяты графики тех функций, в которых относительная 

погрешность между точным и конечно-разностным регуляризованным решениями самая 

большая. В табл.1–5 даны все значения исследуемой функций  .z
a

   

Графики таблицы 1 

  

Рис.1.  ,28.6
2

cos1.3)( zzroa   

 ,28.6
2

cos1.2)( zzCm   

 ,28.6
2

cos6.2)( zzra   

 ,28.6
2

cos6.3)( zzrom  01.0,1  z  

Рис.2.  ,393.0
2

cos1.3)( zzroa   

 ,28.6
2

cos1.2)( zzCm   

 ,28.6
2

cos6.2)( zzra   

 ,28.6
2

cos6.3)( zzrom  01.0,1  z  
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Рис.3.  ,28.6
2

cos1.3)( zzroa   

 ,28.6
2

cos1.2)( zzCm   

 ,28.6
2

cos6.2)( zzra   

 ,28.6
2

cos6.3)( zzrom  004.0,1  z  

Рис.4.  ,28.6
2

cos1.1)( zzroa   

 ,28.6
2

cos1.2)( zzCm   

 ,28.6
2

cos6.2)( zzra   

 ,28.6
2

cos6.3)( zzrom  01.0,6.0  z  
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Рис.5.  ,14.3
4

cos13)( zzroa   ,1)( zCm  

,1)( zra  ,1)( zrom 001.0,4  z  

Рис.6.  ,14.3
4

cos13)( zzroa   ,1)( zCm  

,1)( zra  ,1)( zrom 004.0,4  z  
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Рис.7.  ,14.3
4

cos5)( zzroa   ,1)( zCm  

,1)( zra  ,1)( zrom 001.0,4  z  

Рис.8.  ,28.6
4

cos13)( zzroa   ,1)( zCm  

,1)( zra  ,1)( zrom 001.0,4  z  
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Рис.9.  ,58.12
2

cos2.03)( zzroa   

,1)( zCm  ,1)( zra  ,1)( zrom

001.0,4  z  

Рис.10.  ,58.12
2

cos2.03)( zzroa   

,1)( zCm  ,1)( zra  ,1)( zrom

005.0,4  z  
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Рис.11.  ,58.13
2

cos2.08)( zzroa   

,1)( zCm  ,1)( zra  ,1)( zrom

01.0,4  z  

Рис.12.  ,58.12
2

cos5.03)( zzroa   

,1)( zCm  ,1)( zra  ,1)( zrom

01.0,4  z  
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Рис.13. )(zroa импульсная,  ,1)( zCm  

,1)( zra  ,1)( zrom 001.0,4  z  

Рис.14. )(zroa импульсная,  ,1)( zCm  

,1)( zra  ,1)( zrom 005.0,4  z  
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Рис.15. )(zroa ступенчатая,  ,1)( zCm  

,1)( zra  ,1)( zrom 001.0,3  z  

Рис.16. )(zroa ступенчатая,  ,1)( zCm  

,1)( zra  ,1)( zrom 001.0,2  z  
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